免责声明:以上消息未经人工确认,本平台不担保其真实性和有效性,交易前请仔细核实。
本发明提供了一种基于深度学习的水下偏振图像复原系统及其复原方法。包括以下步骤:步骤1、搭建水下偏振成像系统,拍摄清晰水下强度图像和不同浑浊度水下的偏振图像;步骤2、整理并命名各组偏振图像,建立大量数据集。步骤3、按0.8:0.1:0.1的比例划分训练集,验证集,测试集;步骤4、设计适用于水下偏振图像复原的卷积神经网络;步骤5、生成恢复图像步骤6利用训练集训练上述网络模型;步骤7、用测试集测试经网络模型恢复后的图像质量效果。与现有技术相比,本发明可利用卷积神经网络进行高浑浊度水下图像复原,且恢复图像效果更佳。